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Outline

* Type of data
* Euclidean data
e Structured data

* Graph-based problems
* Graph classification
* Node classification

* Methods
* Graph embedding:

* Graph kernels
e Graph neural networks



Type of Data

Doubt thou the stars are fire,
Doubt that the sun doth move;
Deubt truth te be a liar,; )
But never doubt I love... 3

Text

Audio signals Social networks Regulatory networks

Images Functional networks 3D shapes

Taken from M. Bronstein. CVPR Tutorial 2017



Structured Data

* String
* Tree
* Graph
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Taken from: Margal Rusifol et al: Symbol spotting in vectorized technical drawings
through a lookup table of region strings. PAA 2010
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S = {P(R), P(Ry), P(Rs), P(Ry), P(R5))




Tree

Bag of regions

R. Raveaux et al: Inclusion Tree

Structured representations in a content based image
retrieval context. J. Visual Communication and Image
Representation 24(8): 1252-1268 (2013)
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Adjacency Graph

116359




Region Adjacency Graph

g .

Impact of noise on Graph-Based Representation



Neighborhood graph
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Skeleton Graph
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Molecular graphs

Graph of molecule : Chemoinformatics

graph =
a set of dots
& lines

Structure: Thiamine (Vitamin Bf)  Molecular graph g/--(0r nodes &

.
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Domain structure vs Data on a domain
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Taken from M. Bronstein. CVPR Tutorial 2017
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Fixed vs different domain

Social network
(fixed graph)

Taken from M. Bronstein. CVPR Tutorial 2017

A

i

1D,2D, 3D shapes
(Different graphs)
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Structured data

* We will focus on graphs:
e Graph as a generalization of Euclidean data : vector, matrix, tensors ....
* Graphs as a generalization of strings and trees.
* By nature, data are more likely to be graphs.



Graph-based problems

* Graph classification/clustering/regression
* Vertex classification/clustering/regression
* Graph matching

* Graph distance IA
is the set of tools

* Graph-based search to solve these problems

e Subgraph search : Modelisation, Machine
o Subgraph Spotting learning, Optimization ...
* Similarity search

e Graph prototypes
* Median graphs/ Super graphs




1.

Graph classification

cancerous or .
not cancerous ~ /

molecules /\/\/\
/

determination ‘ ‘

of the boiling /\/\

point

Molecular graph

Taken from M. Bronstein. CVPR Tutorial 2017

Image recognition
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Vertex classification

age
gender

. education
T work

Social network

Taken from M. Bronstein. CVPR Tutorial 2017

Social netwprk
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Vertex classification/clustering

free

person

motorcycle

Semantic image jsegmentation Semantic image segmentation

Taken from M. Bronstein. CVPR Tutorial 2017
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Graph matching
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Graph matching
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Graph distance

How similar are
theses graphs ?

22



Graph-based search

s

@ Given a graph database consisting of n graphs,

D =gl g2,...,gn, and a query graph g, almost all existing
algorithms of processing graph search can be classified into
the following four categories: Full graph search, Subgraph
search, Similarity search and Graph mining.

Full graph search. Find all graphs gi in D s.t. gi is the same
as q.

Subgraph search. Find all graphs gi in D containing g or
contained by g.

Similarity search. Find all graphs gi in D s.t. gi is similar to
g within a user-specified threshold based on some similarity
measures.

Graph mining Graph mining problem gathers similar graph or
subgraph of D in order to find clusters or prototypes. No
query is provided by the user.

23



Median graph
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What do we need to solve these problems ?

* Modelisation, Machine learning, Optimization, ...:

* Graph space:

* Graph matching
 Combinatorial problems (NP-Hard)

* Graph embedding: ¢ —r"

 Embedded of graphs/nodes/edges into a vector space.
* Explicit embedding:
* Through feature extraction (handcrafted or end-to-end learning) or dissimilarities
* Implicit embedding:
e Through graph kernel



Graph Neural Network

Taxonomy:
Graph/node embedding
Explicit embedding
Through feature extraction
End-to-end learning



Graph Neural Network

* Input: A graph
* Output: Node embeddings
* Assumptions: stationarity and compositionality

* The goal:

e Graph Neural Networks (GNN) perform an end-to-end learning including
feature extraction and classification.



The basics of artificial neural networks

Let = € R'*™ be a vector considered as an input data.

HHD = (W)
HE) = o(HOWW) v >0

W) g R™>mit1 is a matrix of trainable parameters. m; is the number of neurons of the layer [.
For the layer 0, H(®) = z. Layer [ + 1 produces a vector H{*1) ¢ R'*™+1_ Finally, o is a non
linear function. This neural network is considered as a model where parameters can be learned.
This model is also denoted as a "dense" layer or "Fully Connected (FC)" layer or a "MulLtilayer
Perceptron” (MLP). The question is how to generalize this artificial neural networks to graphs?

What to do when the input is a graph?

29



The basics of graph neural networks

Definitions Assume we have a graph G-

e V is the vertex set.

e [ is the edge set.

e A is the adjacency matrix (assume binary). A € {0, 1}IVI*IV]
e F € RIVI*™ js a matrix of node features.

— Categorical attributes, text, image data
— Node degrees, clustering coefficients, etc.

— Indicator vectors (i.e., one-hot encoding of each node)

30



Adjacency matrix

OO ™~ OO O
O OO0 m™O v
QOO ™ v O v O
QOO ™ QO v O QO
OO O rt O
&=t v Q) D v
QOO0 00O
2 vt L'CD &'ES v
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Degree matrix

1 20000000
02000000
00300000
00040000
00002000
00000300
00000030
100000003

Normalized Adjacency matrix A = D'A is a stochastic ma-
trix (each row sums to one)
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Key idea and Intuition [Kipf and Welling,
2016]

* The key idea is to generate node embeddings based on local
neighborhoods.

* The intuition is to aggregate node information from their neighbors
using neural networks.

* Nodes have embeddings at each layer and the neural network can be
arbitrary depth. “layer-0” embedding of node u is its input feature,

i.e. Fu.

H') = f(HY, A)



Fz

Fy

(V.E,F.A)=

torial model -

: a pic

GNN

A=adjacency matrix

F=Node feature matrix

Aggregator

Aggregator

Aggregator

Aggregator

Parameters

For a layer



Simple example of f

f(HD, 4) =0 (AHOWD)

where W) ¢ RmM*™Mi+1 js a weight matrix for the l-th neural network layer. m; is indexed by I
because it depends on the number of parameters in the layer I. Theses values are hyperparameters
of the model except for H(®) = F. ¢(.) is a non-linear activation function like the ReLU. Note that
o(.) is a element-wise non-linearity operating on a matrix. But first, let us address two limitations

35



2 issues of this simple example

e [ssue 1:

* for every node, f sums up all the feature vectors of all neighboring nodes but
not the node itself.

* Fix: simply add the identity matrixto A > A=A+I

* [ssue 2:

* Ais typically not normalized and therefore the multiplication with A will
completely change the scale of the feature vectors.

* Fix: Normalizing A such that all rows sum toone: D 'A

f[H“;'.Aj =0 (D_IAH['”[,{,-'EH)



Altogether: [Kipf and Welling, 2016]

« The two patched mentioned before +
* A Dbetter (symmetric) normalization of the adjacency matrix

f{H{“,A} = (D‘%AD—%HU}I{.-’{H)



More complexe models [Nowak et al., 2017]

o I € RIVIXIVI  This identity operator does not consider the structure of the graph and neither
provide any aggregation. Used alone this operator makes the GNN a composition of |V | MLP
completly independent. One MLP for each node feature vector.

e A c RIVIXIVI The adjacency operator gather information on the node neighborhood (1 hop).

o D e RVIXIVI. D = diag(A1. This degree operator gather information on the node degree.
D is node degree matrix (a diagonal matrix).

o A; e RVIXIVI A; = min(1, A?) . Tt encodes 2/-hop neighborhoods of each node, and allow
us to aggregate local information at different scales, which is useful in regular graphs.

e U c 1VI*IVI U is matrix filled with ones. This average operator, which allows to broadcast
information globally at each layer, thus giving the GNN the ability to recover average degrees,
or more generally moments of local graph properties.

By denoting A = {1, D, A, Ay,--- ,A;,U}, a GNN layer is defined as :
FHD, A) =0 ( S BH“JWQJ)
BeA

Q= {_‘Wm, e Ifif"lijl}, I'Fg) € R™Mw>™Ma+1) are trainable parameters. All the nodes share the same
operators but it is not mandatory.

38



GNN as an encoder

ENC : G — RIVIxp



Applications and losses

* Let us recall that Z is the output the GNN



Unsupervised learning

* The graph factorization problem is the problem of predicting if two
nodes are linked or not.

I= Y  (Z]Z;— A )?

{H;'-H_;}E'D

* Where z7z; is a similarity measure between two nodes embeddings

* Variation of graph factorization
 DeepWalk [Perozzi et al., 2014]
* node2vec [Grover and Leskovec, 2016]



Supervised learning

* Node classification : social network

age
gender
. ¥/ education
T work

Social network

Social netwjork

42



Supervised learning

 Node classification :

Semantic image segmentation

tree

person

motorcycle

Semantic image segmentation

43



Supervised learning :Node classification

e Last layer:
Z =RIVIxp;

* For the last layer the activation function is a softmax activation
function.

il 7\ — D‘&p[zz_.lj
Softﬂlﬂ-l{za,j) i _iexp(Z ;)

* The loss :
p
l=— ) D tijlog(Zi)
(ui)eD j=1

Where t; € {0,1}? is a one-hot vector of the ground-truth class label for node u; and D is the data
set composed of nodes.
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Supervised learning:

* Graph classification

* A global average pooling layer must be added to gather all the node
embeddings of a given graph

ZIZEIKP :%Z? 1 ?j‘ '?ij1~}.?

e 7' can be fed to a MLP for classification
* The loss is the cross entropy
#classes

== 2. 2

(G)eD  j=1

Where #classes is the number of classes. D is the data set composed of graphs. t; € {0, 1}7classes
is a one-hot vector of the ground-truth class label for graph G;. Mettre figure.
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Semi-Supervised learning:

 Node classification:

* the problem of classifying nodes in a graph, where labels are only available
for a small subset of nodes.

* where label information is smoothed over the graph via some form of explicit
graph-based regularization

* Assumption is that connected nodes in the graph are likely to share the same

label (class).
* This is true for instance for a neighborhood graph.
I =lo+ Myeg
== — Z Zf”]cﬂf Zij)
(u; ) €D =

Z. [ZS—‘ZJ — J':l?'_j}"‘ —_— L‘E‘C[Z)T‘ﬁ_{ 'E-'E{‘_'.'[Z)
(wi,u;)eD

]“Eg‘



Some applications

 Node classification on citation networks.

* The input is a citation network where nodes are papers, edges are citation
links and optionally bag-of-words features on nodes. The target for each node
is a paper category (e.g. stat.ML, cs.LG, ...).

Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003

NELL Knowledge graph 65,755 266,144 210 5414 0.001
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Matrix completion

* Graph regularization: Matrix completion is the task of filling in the missing entries of a partially observed
matrix. A wide range of datasets are naturally organized in matrix form. One example is the movie-ratings
matrix, as appears in the Netflix problem: Given a ratings matrix in which each entry (i,j) represents the
rating of movie j by user i. When users and movies are organized as graphs then graphs can be used to
regularized the matrix completion problem.

5 5 1

<| 5 5 2
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a1}

[

>

2| 4 5 4
4 1 5

user graph
— N oy /
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Image/molecule classification

* Graph classification: An image is represented as a graph: based on
raw pixels (a regular grid and all images have the same graph) or
based on superpixels (irregular graph)



Summary on GNN

The key idea is to generate node embeddings based on local neighborhoods.

e Graph convolutional networks

— Average neighborhood information and stack neural networks.
e GraphSAGE

— Generalized neighborhood aggregation.
e Gated Graph Neural Networks

— Neighborhood aggregation +— RNNs

e Model wish list :

— Set W' of trainable parameters
— Trainable linear in time in function of |E| or |V|.

— Applicable even if the input graph changes

50



Next part



Graph kernel

Taxonomy:
Graph embedding
Implicit embedding
Graph kernel



Graph kernel

What i1s a kernel

A kernel, in this context, is a symmetric continuous function that
maps

K :|a, b] x [a,b] = R

where symmetric means that K(x,s) = K(s, x). K is said to be
non-negative definite .
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Graph kernel

What is a kernel

The inner product of two vectors a = (al, a2, ..., an) and b = (b1,
b2, ..., bn) is defined as:
(@a-b) =57, ajb; = ajby + asby + -+ + a,b,

54



Kernel Trick

Definition

Graph Kernel Let G be a (finite or infinite) set of graphs. Function
k: G x G — R is called a graph kernel if there exists a possibly
infinite-dimensional Hilbert space F and a mapping ¢ : G — f
such that

° k(g.8") = (v(g). #(g"))
o Vg,g' € G where (.,.) denotes a dot product in F.
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Kernel Trick

M. Aizerman, E. Braverman, and L. Rozonoer, " Theoretical
foundations of the potential function method in pattern
recognition learning ", Automation and Remote Control, vol. 25,

1964, p. 821-837
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Kernel Trick

Defintion

Kernel Trick
@ Let X and y be two vectors in R”
o Let ¢(X) and (¥) be two functions projecting X and ¥ into
R™.
e with n<m
° k(x,y) = (p(x). »(¥))
@ An explicit representation for ¢ is not required.

@ It suffices to know that R™ is an inner product space

57



Kernel Trick

Example:
o Let X and y be two vectors in R?
o Let X = (x1,x2) and ¥ = (y1,)2)
° Lgt ©(X) and ¢(y) be two functions projecting X and ¥ into

o k(X.y)=(X,¥)?
o k(X.¥)=x{yf +2ay1%0y2 + Y33
o k(X,y) = (>, V2xax2,x3). (2, V2y1y2. ¥3))
o k(X,y) = (p(X),¢(¥))
2

Q
2,
s

I
23
S

>
[
5
St



Kernel Trick

Example:
®:R? - R3

(z1,T3) — (21,22, 23) := (22, 1/(2)x1 22, 73)

X
b4 x W X X
» X
4 . % »
.H‘"'.'-_‘_"-"“' ; "\\u b4
'\.
x x{f 5 o \\x X .}i ® X
_|r J . » i ; _.i\"} b4
® II%‘ g J; \ <2 xx
“ \ 4
X ‘-»1_‘: - < x . A 2 9y
X
x 1'\. .'.
.y
X x " X A
pn




Graph kernel : theoretical issues

* To design a kernel taking the whole graph structure into account
amounts to build a complete graph kernel that distinguishes between
2 graphs only if they are not isomorphic

* Complete graph kernel design is theoretically possible ... but practically
infeasible (NP-hard)



Graph Kernel Families

* Diffusion kernels (from similarity matrix)
* Convolution kernel
* Walk kernel (from adjacency matrix)



Graph embedding
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Very Simple Graph Kernel

Graph Kernel / Graph Embedding [Bunke09]

Graph Embedding

@:G—=R" @(g)= (x..., Xn)’
Many information can be extracted :
->nodes, cliques, paths, walk, ...
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Random Walks

Principle (Kashlma et al., ICML 2003, Gaertner et al., COLT 2003)|
* Compare walks in two 1nput graphs G and G’

" Walks are sequences of nodes that allow repetitions of nodes

Elegant computation

* Walks of length & can be computed by looking at the 4&th power of
the adjacency matrix

* Construct direct product graph of G and G’
* Count walks in this product graph G =(V_.E )

* Each walk 1n the product graph corresponds to one walk in G and G’
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Graph kernels based on Common Walks

Walk = (possibly infinite) sequence of labels obtained by
following edges on the graph

Path = walk with no vertex visited twice
Important concept: direct product of two graphs G1xG2
- V(G1xG2)={(v1,v2), vl and v2: same labels)

E(G1xG2)={(el,e2): el, e2: same labels, p(el) and p(e2)
same labels, n(el) and n(e2) same labels}

Same labels : Difficulty to deal with numeric attributes

» O
oe) © n(e)
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Random Walks:
Explanation : Direct Graph Product

» Formal Definition

Vu(G x G') ={(v,v) : v e V,v' € V'}
E.(G x G) ={((v,?"), (w,w")) : (v,w) € E,(V,w') € E'}

66



Random Walk

® From a vertex i randomly jump to any adjacent vertex j
® Probability of jumping to 5 proportional to /iij

67



Walks of lengh 2

—_—O = O O = O
— OO = OO
Pk ek ek ke O O

® Entries of A% = number of length 2 walks
® Entries of A2 = probability of length 2 walks

—_— DD = = s = = O

[t e o T i e B
P O O b= =t = (O

C WO N O

Co OB = = = =
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Random Walks:
Explanation : Idea

®» Count number of
walks between two
nodes

® Two nodes are similar
if they are connected
by many walks

® Does not work :(
® |f graph has cycles then number of walks goes to oo
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Random Walks:
Explanation : a better idea

® Discount contribution
, of longer walks
3 ® Count number of

walks between two
nodes

® Two nodes are similar
. if they are connected
by many walks

® Works if discounting factor chosen appropriately!
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Random Walks:
Explanation : Diffusion Kernels

Discounting Factor:
® Discount a k length walk by \*/k! for0 < A < 1
Similarity:
® Similarity defined as

k(i,j) = | ) —A*| =[exp(AA)];
|k dij
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Random Walks:

Explanation : Graph Comparison

Random Walk on Product Graph:

® Equivalent to simultaneous random walk on input graphs

Kernel Definition:

1

/ o k o
k(G,G) = |GHGF|Z eAe fel

e exp(AAy)e
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Efficient computation ?

Product Graph is Huge:
® If G and G’ have n vertices then product graph has n?
vertices
® Adjacency matrix Ay is of size n? x n?
RXP(A‘A“?J; ‘

hv—/
O(nf)!




Summary on graph kernels

 Comparing paths of two different graphs is polynomial

 Comparing subgraphs of two different graphs optimally is not
guaranteed in polynomial time.

* Tradeoff between expressivity of the kernel and the computation
time.

e Kernels have been extended to take into account numeric attributes.



Some experiments

* Comparison between graph kernels and graph neural networks.

e Taken from :
 How Powerful are Graph Neural Networks? (2018)
 Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka
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Social networks datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets.
Each graph corresponds to an ego-network for each actor/actress, where nodes correspond to ac-
tors/actresses and an edge is drawn betwen two actors/actresses if they appear in the same movie.
Each graph is derived from a pre-specified genre of movies, and the task is to classify the genre
graph it is derived from. REDDIT-BINARY and REDDIT-MULTI5K are balanced datasets where
each graph corresponds to an online discussion thread and nodes correspond to users. An edge was
drawn between two nodes if at least one of them responded to another’s comment. The task is to
classify each graph to a community or a subreddit it belongs to. COLLAB is a scientific collaboration
dataset, derived from 3 public collaboration datasets, namely, High Energy Physics, Condensed
Matter Physics and Astro Physics. Each graph corresponds to an ego-network of different researchers
from each field. The task is to classify each graph to a field the corresponding researcher belongs to.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro
compounds with 7 discrete labels. PROTEINS is a dataset where nodes are secondary structure
elements (SSEs) and there is an edge between two nodes if they are neighbors in the amino-acid
sequence or in 3D space. It has 3 discrete labels, representing helix, sheet or turn. PTC is a dataset
of 344 chemical compounds that reports the carcinogenicity for male and female rats and it has 19
discrete labels. NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and
is a subset of balanced datasets of chemical compounds screened for ability to suppress or inhibit the
growth of a panel of human tumor cell lines, having 37 discrete labels.
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Datasets IMDB-BE  IMDB-M RDT-B EDT-M35K COLLAB MUTAG PROTEINS PTC NCI1
% # graphs 1000 1500 2000 5000 5000 188 1113 344 4110
S #classes 2 3 2 5 3 2 2 2 2
A Avg # nodes 19.3 13.0 429.6 508.5 74.5 17.9 39.1 25.5 29.8
WL subtree 738439 509+38  81.0+3.l 525421  789+19 904+57 750+£31 599+43 860+18"
2 DCNN 49.1 335 - - 52.1 67.0 61.3 56.6 62.6
S PATCHYSAN 710422 452428  863+16 4901407  T26+22 926+42° T59+28 600+48 786+ 19
% DGCNN 70.0 478 - - 73.7 85.8 75.5 58.6 74.4
AWL T45+£59 515+36 879+25 547129 73919 879+0908 - - -
GIN-¢ (SUM-MLP) 743+51 521+36 922+23  57.0+17 801+19 890+60 759+38 637+82 827+16
£ GIN-0(SUM-MLP) 75.1+51 523+28 924425  57.5+15 802+19 894+56 762+28 64.6+7.0 827+ 17
£ SUM-1-LAYER 741450 522424  900+27  551+16 80.6+19 90.0+88 762+26 631+57 820415
Z MEAN-MLP 737437 52331 C0E00T 2002001 oo, 05 g35+163 755434 666+69 809+ 18
é (71.2 + 4.6) (413 +21)
MEAN—-]-LAYER 740+34 519438 50000 200 £00' TO.0+ 18 B856+58 76.0 £ 3.2 642+ 43 802+20
(69.7 +3.2) (39.7+24)
MAX-MLP 732458 S5L1+36 - - - 84061 760+£32 646+102 778+ 13
MAX—1-LAYER 723+£53 509+22 - - - 851+76 759+32 63977 717+ 1.5

Table 1: Classification accuracies (%). I indicate test accuracies (equal to chance rates) when all
nodes have the same feature vector. We also report in the parentheses the test accuracies when
the node degrees are used as input node features. The best-performing GNNs are highlighted with
boldface. On datasets where GINs’ accuracy is not strictly the highest among GNN variants, GINs
are comparable to the best because paired t-test at significance level 10% does not distinguish GINs
from the best. If a baseline performs better than all GNNs, we highlight it with boldface and asterisk.

77



Distance onto graph space

* Graph comparison is not a trivial task

e Due to the wide range of patterns (i.e : comparing the number of nodes is not
enough).

* Closely related to graph matching problems



Graph distance : Intuition

NNNNTT T

Deletion Substitution Substitution Both
/ Vertices operations \ /. . (fg)gf. opera;ions . \ / This solution costs: \
*OP;1>¢ mmmp C #(12) >e  wmmp Cq
cOP;25>2 wmmp C, ® OP;:(2,3) > (a)b) mmmmp C, d = z C(op;)
* OP,:3~->b "‘ C * OPz(3:4) > (b,e) ll‘ C; op; € operations
& 3 ®* OP,:(2,4) >¢ mmmp C, piEop

®* OP;4>c wmmp
/

o o AN /




Graph Distance : Modelling

e Notations

Edit operation Variable | Cost
Substitution of vertex ¢ by vertex k s Ci k
Deletion of vertex ¢ U; Ci.c
Insertion of vetex k Vg Ce 1
Substitution of edge 15 by edge kl Yij kl Cij kl
Deletion of edge 17 €ij Cije
Insertion of edge kl fri Ce ki
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Graph distance : Integer Linear Program

 Objective function:

Vertex substitutions Edge substitutions vertex deletions

C(x,y,u,v,e,f) = S: S: Cik " Tik T 5? ;j Cijkl " Yij kl T Z Cie * Ui

1€V7 keVs ek kleEo eV
E Cek * Vg T+ E Cij.e * €ij T E Ce.kl " ki
kEVQ ZjEEl leEQ

R N R U, L ()

vertex insertions edge deletions edge insertions



Graph distance : Integer Linear Program

deletion substitutions
U; + E ik — 1 Vee
Vertices  keVe
mapping Insertion
constraints Vi + E rir =1 Vke&Vy
eV
deletion substitutions
€5 E Yij kl — 1 \V/Zj c F1
Edges kle Fs
mapping
constraints fkl + E Vs o] = 1 Vkl € E2

. e b
Insertion



Graph distance : Integer Linear Program

 Topological constraints

@ @ Yiikl < Tig  V(ij, kl) € By x By
y

@ @ Yij ki < Xjl V(Z], kl) c F x Es



Distance onto graph space

* NP-Hard problem
* Finding the optimal solution is not guaranteed in polynomial time.

* Models : ILP models
* Solvers : Exact and heuristic methods (Matheuristic)

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, Sébastien Adam:
New binary linear programming formulation to compute the graph edit
distance. Pattern Recognition 72: 254-265 (2017)
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End-to-end learning technigues onto graph
space

* Neural networks
* « Usually » deal with Euclidean data (vectors, matrices, tensors, ...).

e deal with sequence ->RNN
* Wanted : Neural networks dealing with graphs

* Input : a graph
e Output : a graph (and a scalar)



Graph Neural Network onto graph space

I

—

1.B

Key points:

1.

Z

>

Heaviside

(h(z))

f
—>

\_Y_I

Perceptron

Each neuron is a graph

G|

—_

Z. ¢ is a parametrized version the graph distance

Z

B.®(G',G™, y)=

Heaviside

(h(z))

—>

Graph-based Perceptron
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Parametrized graph distance

* Each neuron is a graph
* The input is a graph
* We have 2 graphs :

e Graph distance computation

* Graph distance should be trainable

i

d(G',G2,y, B) =BT (G', G2, y)

=...+ﬁﬂ.dv(L}r(ﬂ),L§)+
+ )Sﬂb ’ dE(L}r(a;H(ms Lgb) + -

Matching
Yia1,a1) = 1
Y282y = 1
}'{Cs,Ce} =1
Yia1,p2; = 1
Yiaece} = 1

d(Gl’ Gz,y;ﬂ) —
Yiar,a1)d(A,1)B; + d(B, 2) B +Yce,ceyd(C, €)Bey +
Via1,82)4(AB,12)B 12} + Vise,ce)d(AC, £8) Biee)
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Learning the graph neural network

* One loss :

min [(G¥, c,.G™, y,.
il kz (G%, ¢ Yis B)
(G )eTTS

| = (Ck—hE{]UISIdE(ﬁ O (G, G yk)))

[N-J'I'—"

* Minimizer :
* Gradient descent for the weights (f)
* Graph distance solver for the y variables

Maxime Martineau, Romain Raveaux, Donatello Conte, Gilles Venturini, Learning error-correcting graph ma,tghmg with a
multiclass neural network, Pattern Recognition Letters, 2018



https://www.sciencedirect.com/science/article/pii/S0167865518301107

Graph convolution neural network onto graph
space

Legend:
— Bridge between methods

Machine learning for graph classification

|
Explicit Embedding Implicit Embedding Graph matching

Learned (end-to-end) Handcrafted Graph kernels

Kernels based on
graph matching

Dissimilarity representatlon based on graph matching

Graph Neural SVM, Neural SVM based random

networks netwoks walk kernels for
instance
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Graph convolution neural network onto graph
space

Definitions: G=(V,E,u,0) | MV =R | TE - R | sp: VXV 5 R | sg:EXE - R

DecompTosition
n-hop neighborhood
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Thank you

* Any questions ?



